Part Number Hot Search : 
00002 TLP715 BEAMHRK 95200 LCWC1008 MS13ASW 12802 PDTC124E
Product Description
Full Text Search
 

To Download AUIRFR4104 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  AUIRFR4104 auirfu4104 hexfet ? power mosfet 1 automotive grade features advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free, rohs compliant automotive qualified * description specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive appli- cations and a wide variety of other applications. v (br)dss 40v r ds(on) max. 5.5m ? i d (silicon limited) 119a i d (package limited) 42a s d g gds gate drain source d-pak AUIRFR4104 i-pak auirfu4104       absolute maximum ratings stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds (1.6mm from case ) mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  ??? 1.05 r ja junction-to-ambient (pcb mount)  ??? 40 c/w r ja junction-to-ambient ??? 110 310 145 see fig.12a, 12b, 15, 16 140 0.95 20 max. 119 84 480 42 -55 to + 175 300 10 lbf  in (1.1n  m) www.kersemi.com
  2 static electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units v (br)dss drain-to-source breakdown volta g e40??????v ? v (br)dss / ? t j breakdown volta g e temp. coefficient ??? 0.032 ??? v/c r ds(on) static drain-to-source on-resistance ??? 4.3 5.5 m ? v gs(th) gate threshold volta g e2.0???4.0v g fs forward transconductance 58 ??? ??? s i dss drain-to-source leaka g e current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leaka g e ??? ??? 200 na gate-to-source reverse leaka g e ??? ??? -200 dynamic electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units q g total gate char g e ??? 59 89 q gs gate-to-source char g e???19???nc q gd gate-to-drain ("miller") char g e???24??? t d(on) turn-on dela y time ???17??? t r rise time ???69??? t d(off) turn-off dela y time ???37???ns t f fall time ???36??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from packa g e and center of die contact c iss input capacitance ??? 2950 ??? c oss output capacitance ??? 660 ??? c rss reverse transfer capacitance ??? 370 ??? pf c oss output capacitance ??? 2130 ??? c oss output capacitance ??? 590 ??? c oss eff. effective output capacitance ??? 850 ??? diode characteristics parameter min. t y p. max. units i s continuous source current ??? ??? 42 (body diode) a i sm pulsed source current ??? ??? 480 (body diode)  v sd diode forward volta g e ??? ??? 1.3 v t rr reverse recover y time ???2842ns q rr reverse recover y char g e ??? 24 36 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 10v, i d = 42a i d = 42a v ds = 32v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v mosfet symbol showing the integral reverse p-n junction diode. t j = 25c, i s = 42a, v gs = 0v  t j = 25c, i f = 42a, v dd = 20v di/dt = 100a/ s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 42a  v ds = v gs , i d = 100a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c conditions v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 32v, ? = 1.0mhz v gs = 0v, v ds = 0v to 32v  v gs = 10v  v dd = 20v i d = 42a r g = 6.8 ? www.kersemi.com
  3 qualification information ? d-pak msl1 i-pak msl1 qualification level automotive (per aec-q101) ?? comments: this part number(s) passed automotive qualification. ir?s industrial and consumer qualification level is granted by extension of the higher automotive level. charged device model class c3 aec-q101-005 moisture sensitivity level rohs compliant yes esd machine model class m4 aec-q101-002 human body model class h1c aec-q101-001 www.kersemi.com
  4 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 4.5v    


 
    
    0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.5v    


 
    
   4 6 8 10 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 20v 60s pulse width t j = 25c t j = 175c 0 20406080100 i d, drain-to-source current (a) 0 20 40 60 80 100 120 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width www.kersemi.com
  5 fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.0 0.5 1.0 1.5 2.0 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 5000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20406080100 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v vds= 20v i d = 42a 0 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec www.kersemi.com
  6 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 42a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.5067 0.000414 0.5428 0.004081 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri www.kersemi.com
  7 q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - !"$ fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 9.2a 13a bottom 42a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a www.kersemi.com
  8 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7.  t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming  tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 42a www.kersemi.com
  9 fig 17. %&'  ()(
*
 
 for n-channel hexfet   power mosfets  ?  !  ? "  ?  #$!  %& p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period +   
    + + - + + + - - -      '' ? ()""*+  ? '(&,' -  ? !  ""*'./'/ ? ' -  0'(-   v ds 90% 10% v gs t d(on) t r t d(off) t f ' "12 1 3 '. 0.1 %  '      + - '' fig 18a. switching time test circuit fig 18b. switching time waveforms www.kersemi.com
  10  

  
      
   www.kersemi.com
  11  
   
      
   www.kersemi.com
  12   

  !  "# 
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch  repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).  limited by t jmax , starting t j = 25c, l = 0.16mh r g = 25 ? , i as = 42a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . 
 limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population, starting t j = 25c, l = 0.16mh, r g = 25 ? , i as = 42a, v gs =10v.  when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994.  r is measured at tj approximately 90c. www.kersemi.com


▲Up To Search▲   

 
Price & Availability of AUIRFR4104

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X